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The effectiveness of a twisted gaseous screen in a cylindrical channel and heat and 
mass transfer under such conditions were studied experimentally in [1-3], where a number 
of characteristic features, as compared with the nontwisted screen, determined by the 
rotation of the peripheral part of the flow were established. In particular, it is shown 
in [i] that increasing the injection parameter of the inert gas m = PsWs/p0w0 in the 
presence of twisting, unlike the nontwisted screen, intensifies the mass transfer processes. 
At the same time, flows with partial peripheral twisting differ from completely twisted 
flows. The main difference consists of the fact that in the presence of peripheral twisting 
of the flow a typical jet circulation profile with two characteristic zones - the zone near 
the wall and an exterior zone - develops. In the part of the circulation profile near the 
wall (y < 6m, Fig. i), like in completely twisted flows owing to the interaction with the 
wall, the circulation deceases (dr/dr < 0), which in its turn intensifies heat and mass 
transfer processes. In the jet part of the boundary layer (6 m < y < 6) the circulation 
increases in the radial direction (dr/dr > 0) and the turbulent transport by centrifugal 
forces is suppressed, which can reduce heat flows from the core of the flow to the wall [i]. 
This phenomenon is widely employed for thermal shielding of walls and stabilization of arcs 
in plasma reactors [5]. So, the magnitude of the heat flux in channels with peripheral 
twisting is determined primarily by two factors - intensification of heat transfer in the 
pare of the boundary layer near the wall and suppression of the external part in it. 
C0rrespondingly, depending on the specific conditions, the rotation of the peripheral 
flow can both increase and decrease the coefficients Of turbulent heat and mass transfer 
on the surface of the channel. 

In this paper the dynamics and heat and mass transfer are analyzed for a flow with a 
twisted screen near the wall with m < i. Taking into account all of the above-indicated 
factors substantially increases the complexity of the calculation of the parameters of the 
twisted screen. Therefore, in order to obtain the final analytic expressions, a number 
of simplifying assumptions are adopted in the solution; the main factors, determining the 
process of development of a rotating jet in a cylindrical channel, are, however, taken into 
account here. 

i. Integral Energy and Momentum Relations for a Twisted Screen. Consider a twisted 
jet, developing in a cylindrical channel in the presence of a comoving untwisted flow at 
its center, near the wall. A diagram of the flow is shown in Fig. i. The jet is injected 
through a gap of height s and has an initial twist angle of ~s- For small injection 
parameters (m < i), owing to the interaction of the jet with the main flow, the twist angle 
of the flow at the wall will decrease quite rapidly along the channel. 

The basic parameters of the problem under study to be determined are the distribution 
of the temperature of the adiabatic surface (effectiveness of the screen), and also the heat 
and mass fluxes in the presence of heat and mass transfer at the wall. For a rotating jet 
near the wall the unknown quantity is the change in the twist angle of the flow at the wall 
along the channel. F6r this reason, in the case under study, the integral equations for the 
momentum, the angular momentum, and the energy must be solved simultaneously. 

It is easy to show that the integral relation for the energy for a twisted gaseous 
screen on an adiabatic surface (qw = 0) is identical to the analogous dependence for a 
screen with no twisting [6] 
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Fig. i 

Equation (i~ was obtained under the condition that the longitudinal velocity in the core 
of the flow w0 is constant. Here 8 = (To - Te)/(T0 - T s) is the effectiveness of the gas 

W 
screen, while T s, T o and T~ are the temperature of the gas in the gap, in the core of the flow, 
and on the adiabatic surface. The thickness of the energy loss layer is determined by 

6T 

Y d 
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where n = (T - Tw)/(T 0 - T~) is the dimensionless temperature in the boundary layer. 

An integral equation for the conversion of angular momentum can be obtained in a similar 
manner from the differential equation of motion in a circular direction, taking into account 
the boundary conditions in the core of the flow r = R 0 - 6, w = w 0, F = vr = 0, u = 0, T~ = 0 
and at the wall of the channel r = R0, w = 0, u = 0, v = 0, #T = Tr 

6 

d--z p w r  t -  dy = ~ R  o. 
0 

From here, neglecting the losses owing to friction against the surface of the channel in the 
circulation direction ~r = 0, for a zero gradient flow (dw0/dz = 0) from (1.3) we obtain 

d ( ~8~ )/d~ = O. ( 1 4 )  

Here ~m = rm/rs ;  rs = VsR0 i s  t h e  c i r c u l a t i o n  o f  t h e  f low in  t h e  gap f o r  s << R0; and w, 

v ,  and u a r e  t h e  l o n g i t u d i n a l ,  a z i m u t h a l ,  and r a d i a l  components  o f  t h e  v e l o c i t y .  

The t h i c k n e s s  o f  t h e  angula r -momentum l o s s  l a y e r  i s  d e t e r m i n e d  by t h e  e x p r e s s i o n  

#--S &r 
0 0 0 ~ \  O /  " 

Comparison of the experimental d i s t r i b u t i o n s  of the temperatures and c i r cu la t ions  in the 
jet part of the boundary layer of the twisted gaseous screen showed [3] that these profiles 
are similar to one another and can be described by jet dependences, in particular, by 
Schlichting' s formula 

r/r~ = ~ - ~ = (r - r 0Y( r : -  r0) = (~ -  ?,9 ' 
(~ = . ( n o  - O/a = y / a ) .  

Comparison of (1.2) and (1.5) shows that when the thicknesses of the thermal and dynamic 
boundary layers are the same (6 T = 6~ = 6), the integral scales also are the same (6~* = 6~). 

Taking this fact into account, after integrating (i.i) and (1.4) we obtain 

,***/ ** ** ** ( 1 . 6 )  
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where 8r rm/r s is the change in the maximum circulation along the channel; 6~ %~ 

ms(l - s/2 R0) % ms are the integral parameters on the cutoff of the gap. 

The relations (1.6) imply the important result that the maximum value of the circula- 
tion in the boundary layer of the twisted screen Fm/F s decreases along the channel just 
like the dimensionless temperature of the adiabatic wall, if the f~ihtlonal losses of 
twisting of the flow are neglected, i.e., in this case the change in the circulation F m 
along the channel owing only to the mixing or the twisted peripheral flow with the untwisted 
main flow is taken into account. Then it is sufficient to find the change in the angle of 
twist of the flow at the wall, whose value also determines the intensity of the transport 
processes in the boundary layer. Assuming that the circulation profile in the part near the 
wall (y < 6m), like the profile of the longitudinal component of the velocity, is described 
by the same power-law dependence (this is equivalent to a constant angle of twist along 
the thickness of the given zone), from (1.6) we obtain 

r .  wdw o : {}~ (8/8.,)~ (ms/wo),: (1 .7 )  tg q~m/tg ~ = r~ (am/~)~ 

where Cm and Cs are the angle of twist at the wall in the section under study and at the 
cutoff of the slit, and n is the exponent in the power law for the distribution of the 
velocity w/w 0 = (y/6)n. When the screen is twisted, the quantity n differs from the value 
for the standard boundary layer no = 1/7, and depends on the magnitude of the effect of the 
mass forces on the turbulent transport. 

We shall determine the change in the effectiveness of the gaseous screen and of the 
maximum circulation along the channel by the method developed in [6] for gaseous screens on a 
plate, and we shall employ this method in the analysis of the twisted screen. Since the 
equation of conservation of momentum in the longitudinal direction for a twisted flow has 
the same form as the integral equation for the momentum when there is no twisting [7], we 
shall write the expression for the effectiveness of the screen in a manner analogous to the 
expression for the flow on the plate [6] 

�9 ]-~ (1.8) 

Zo _~ 

Here z 0 is the length of the initial section, where 8 = i; Re s = PsWsS/~s �9 

Taking into account the similarity of the circulations and temperatures in the twisted 
screen, the expression for the angle of twist along the channel has the same form as (1.8): 

(1.9) 

z " " 0 25 " ! - - 0 , 8  

The effect of the rotation of the peripheral part of the flow on the effectiveness of 
the screen and the damping of the twisting in (1.8) and (1.9) is manifested through the 
ratio of the:coefficients 8/80 and the relative friction functions, determined by the 
increase in the velocity vector owing to the twisting (~r and also through the effect of 
mass forces on the turbulent transport. According to [7], the latter quantities are deter- 
mined by the relations 

~F~ : l/cosvm~ ( 1.10 ) 

( l . l l )  ~ c =  i+t,8"103~-~os*n"~m" ~- + 2  

The expression (i. Ii) is valid for a boundary layer on a convex surface in the presence of a 
twisted screen. The function of nonisothermality is written in (1.8) and (1.9) in the 
standard fashion [6]: ~T = [2/(~ + 1)] 2 , where ~ = T~/T0 is the temperature factor. 
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In the relations (1.8) and (1.9) 8 = 6~*/6 ** (6** is the thickness of the momentum loss 

in the longitudinal direction). In the limit Re + ~ the expression for 8, for a sufficiently 
thin boundary layer 6/R 0 << i, has the same form as for a nontwisted screen [6] 

! 
For a nontwisted screen under isothermal conditions p = P/Po % I and m 0 = ~l]~ from 

(1.12) 80 = 9. In the general case the rotation of the screen will be manifested in ~ through 
the profile of the longitudinal velocity, whose filling depends on the magnitude of the effect 
of the mass forces on the turbulent transport. 

2. Effect of Mass Forces on ........ the Longitudinal Velocity Profile in the Twisted Screen. 
We shall determine the effect of different factors on the longitudinal velocity profile. 
The expression for the longitudinal component of the tangential stress in a three-dimensional 
boundary layer is given by 

�9 F (~orV],~7 ( 2 . 1 )  

tgs i'+k~r~7~-/j I. 
The function f in (2.1) takes into account the effect of mass forces on turbulence in the 
boundary layer [8]. In the twisted gaseous screen, as indicated above, there are two 
characteristic zones in which the mass forces act in opposite directions. In the part near 
the wall (0 < y < 6 m) the circulation decreases in the radial direction, which intensifies 
the turbulent transport, and in addition [8] 

/ = ~ i .:- (y/lo)sRi. (2.2) 

In the exterior region (~ < y < 6 m) dr/dr > 0 and turbulent transport is suppressed. 
The quantity f in this zone is calculated [8] as 

gxt= l V l  + (~&)~ Ri. 

Richardson's number in (2.2) and (2.3) is [8] 

(+o< 

(2.3) 

(2.4) 

The calculation of the characteristics of the boundary layer from Eq. (2.1) must corres- 
pondingly be carried out for two regions: the region near the wall and the exterior region~ 

Because of the fact that the thickness of the zone near the wall is much smaller than 
the thickness of the exterior zone (6m/6 << !) however, the effect of the near-wall zone 
on the exterior zone is insignificant, and the calculation of the velocity distribution over 
the thickness of the latter can be carried out taking into account only the suppression of 
the turbulent transport in the jet part of the boundary layer. 

Then Eq. (2.1) can be put into the form 

O Ol/ i5  (2.5) 

The velocity profile in the standard boundary layer is given by ~0 = 6 I/7 . 

The function reflecting the increase in the gradient of the flow velocity in the ex- 
terior part of the screen, according to (2.1), equals 

/ t dr \~ lU~ 

] j 
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Fig. 2 

while the effect of the mass forces on the suppression of the turbulent transport in this 
zone is described by the formula (2.3). To a first approximation it may be assumed that 
fo~ % ~ and the possible error in using this form is insignificant here, since rapid decay 

the twisting is characteristic for the screen and P~ % fr § i. 

The expression (2.4) can be put into the form [7] 

6sin~ [ *--i ] (2.6) 
i 

Then assuming t h a t  (g/lo)2,~-,(6/lo)2= i/c~, t he  e x p r e s s i o n  f o r  the  f u n c t i o n  e x p r e s s i n g  the  
s u p p r e s s i o n  of  t u r b u l e n c e  in the  e x t e r i o r  p a r t  of  t he  l a y e r  ( 2 . 3 ) ,  t a k i n g  in to  account  ( 2 . 6 ) ,  
can be written as 

It may be assumed [9] that in the exterior part of the boundary layer Co % 0.09. 

We shall determine from (2.5) the exponent n in the law governing the variation of the 
longitudinal velocity ~ = ~n, assuming that in the exterior part of the boundary layer 
p ~ i: 

. = ( z. 8) 

Since in the exterior part of the boundary layer ~n0-n + i, (2.8) assumes the form 

= w=w,J&x, (2.9) 

In spite of the quite severe simplifications, the dependence (2.9)satisfactorily des- 
cribes the effect of mass forces on the filling of the velocity profile in the boundary 
layer of the twisted gaseous screen. Figure 2 shows the experimental data [i0, Ii] on the 
distribution of the axial component of the velocity in the presence of the untwisted (light 
circles) and twisted ~s = 74~ (dark circles) screens. The injection parameter m = 0.5, and 
the distance from the cutoff of the slit is z/s = 48, 93, and 147 (points 1-3). 

It is well-known [i0] that in a nontwisted gaseous screen the nonuniformity of the 
velocity profile in the starting sections, caused by the injection, vanishes rapidly down- 
stream and the velocity distribution assumes the form of the standard power-law profile for 
a turbulent boundary layer. This is also confirmed by the data in Fig. 2 (light circles), 
where the line 4 shows the computed dependence for the standard boundary layer no = 1/7. 

A similar picture is to be expected under conditions of twisting of the screen, especially 
since the effectiveness of the mixing of the jet near the wall with the main flow would 
appear to be higher owing to the twisting. As follows from Fig. 2, however, the suppression 
of turbulence in the exterior part of the boundary layer predominates in this case, and this 
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reduces the filling of the longitudinal velocity profile. 

According to the calculation, for a twisted screen with m = 0.5, #s = 74~ and z/s % 100 
the exponent in the power law of the velocity (2.9) n % 0.26 and remained virtually constant 
along the channel. The line 5 in Fig. 2 shows the computed profile f6~ these conditions. 
It is evident that the computed curve falls along the experimental points, and the experi- 
mental points deviate from the curve for the standard boundary layer. 

The results of the calculations based on the formulas (i.i0), (i,ii), (2.7), and (2.9) 
with 6/R o = 0.1 are presented in Table i, whence it follows that the twisting of the screen 
appreciably changes the friction, degree of suppression of the turbulent transport fext, and 

lelR~1~5~ ~ ~ c.. h.~0,25 determining the effective- the coefficient 6. However, the complex ~w,~0J' �9 c T~w,~0J 
ness of the screen according to the expressions (1.8) and (1.9), changes insignificantly. 
A similar tendency is also observed for other ratios 6/R 0 for nonisothermal flows. This 
important fact enables substantial simplification of the analysis of the effectiveness and 
the dynamics of tile twisted screen and the calculation of quantities to a first approximation 
neglecting deviations from isothermal conditions, twisting, mass forces, and other factors. 

Then the dependences (1.8) and (1.9) will assume the form 

Z- Z o 0 2 ~--0,8 o= 0 ; (2.10) 

z--z / w  ~t'2~16 \z,~n ]-0,8 
tg+~/tg+~= i +0,25~-~s-~ ) [~)  Rer~ . (2.11) 

J 
The weak effect of the twisting on the effectiveness of the thermal screen, calculated 

taking into account the length of the initial section, is shown experimentally in [2]. 

Figure 3 shows the generalization of the experimental data [2] on the effectiveness of 
the twisted screen (dark points) and the decay of circulation along the channel (light 
points). The experimental data in Fig. 2 correspond to the following experimental conditions: 

1 - -  % = 58 ~ m = 0,3; 2 - -  58 ~ 0,5; 3 ' - -  58 ~ 0,9; 4 - -  74 ~, 0~3; 5 - -  74 ~ 0,5; 6 - -  58 ~ 0.3; 7 - -  58~ 0,5; 8 - -  58 ~ 0,9; 

9 - -  74 ~ 0.3; 1 0  ---: 74 ~ 0.5; 11  - -  74 ~ 0,9; 1 2  .-- 0 ~ 0,3; 1 3  - -  0 ~ 0.5. The p o i n t s  12 and  13 c o r r e s p o n d  t o  
e x p e r i m e n t s  on t h e  e f f e c t i v e n e s s  f o r  a n o n t w i s t e d  s c r e e n .  I n  t h e  e x p e r i m e n t s  o f  [ 2 ]  t h e  
a n g l e s  o f  t w i s t  o f  t h e  f l o w  a t  t h e  w a l l  w e r e  m e a s u r e d ,  so  t h a t  t h e  e x p e r i m e n t a l  d a t a  on t h e  
d e c a y  o f  t h e  maximum c i r c u l a t i o n  w e r e  d e t e r m i n e d  u s i n g  t h e  e x p r e s s i o n  ( 1 . 7 ) .  I n  so  d o i n g  i t  
was  a s s u m e d  t h a t  n = 1 / 7  and  6m/6 = 0 . 2 1 ,  t h e  l a t t e r  was o b t a i n e d  f r o m  t h e  s o l u t i o n  o f  t h e  
i n t e g r a l  momentum e q u a t i o n  f o r  t h e  t w i s t e d  s c r e e n  [ 7 ] .  The l e n g t h  o f  t h e  i n i t i a l  s e c t i o n ,  
owing  t o  i t s  s h o r t n e s s ,  was  a s s u m e d  t o  e q u a l  z 0 = 0 i n  t h e  c a l c u l a t i o n .  The e x p e r i m e n t a l  
results for the twist angle and the thermal efficiency are the same, indicating the similarity 
of heat and angular momentum transport processesin twisted screens. The same data agree 
with the experimental points for the nontwisted screen and the results of the calculations 
based on the formula (2.10) (the line in Fig. 3), which confirms the possibility of using the 
simplified dependences (2.10) and (2.1.1) for the calculations. 

3. Heat and Mass Transfer in a Boundary Layer with a Twisted Screen. The coefficient 
of heat and mass transfer on the surface in the presence of a twisted screen can be deter- 
mined from the formula 

S t  = ~St0 = ~ c ~ r S t 0 .  ( 3 . 1 )  

Here St = q~/poWo%(T~--T~); W~, ~c, Wz are the relative coefficients of heat and mass transfer, 
determined by the effect of the twisting of the flow, the centrifugal forces, and the 
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nonisothermality. These quantities, by analogy with friction and heat and mass transfer in 
a twisted flow [7], are identical to the similar dependences for the friction (i.i0) and 
(i.ii). Stanton's number under standard conditions is calculated based on the formula 

/, \0 ,25 

where Re~* : pw06~'~/~0, while the thickness of the energy losses 6~* is determined according 

to (1.2). The Reynolds number is found from the solution of the integral energy equation 
and for qw = const has the form 

** ( I I " I ~  ( 3 . 3 )  
BeT = 0.0306 Re~ 's (V~c~tT) ~ Pr ~-~ k'~o] " 

The simultaneous solution of (3.1)-(3.3) and (l.10), (i.ii) gives the working dependence 
for the coefficient of heat and mass transfer 

-- l loa6 ~ . ~o,8 / \o,~ 
X ( I - I - ~ ) ]  'q~T/ �9 ( ~ )  Pr-~ 

( 3 . 4 )  

The value of the twist angles of the flow at the wall, appearing in Eq. (3.4), is calculated 
from the relations (1.9) or (2.11). 

Figure 4 shows the data on the heat transfer under conditions close to isothermal 
conditions in the twisted screen [2] for m = 0.5 and ~s = O; 58; 74 ~ (points 1-3); the lines 
were calculated using the formula (3.4). It is evident that the calculation satisfactorily 
describes the increase in the heat transfer as the twist angle increases. In addition, this 
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excess for the initial sections of the channel equals 200-300%, while the twisting decays 
downstrean and its effect decreases. 

Figure 5 shows a generalization of the experimental data for heat and mass transfer 
for isothermal, strongly nonisothermal, nontwisted, and completely twisted flows. The 
calculation of the heat and mass transfer in completely twisted flows also can be carried 
out based on Eq. (3.4), using in this case the experimentally determined local values of 
the twist angle of the flow at the wall, Re z = p0w0z/p and ~*. The experimental data in 

Fig. 5 correspond to the following conditions: completely twisted flows [12]: I) 0 = 7, 
= 32~ 2) 7, 45~ 3) 7, 0~ partially twisted flows [i]: 4) ~ = 7, ~s = 58~ m = 0.8; 

5) 7, 74 ~ , 0.68; quasiisothermal screens [2]: 6) ~ = i, 2, ~s = 58~ m = 0.5; 7) i, 2, 58 ~ , 
0 , 9 ;  8) 1, 2,  0 ~ 0 . 5 .  

The experimental data in Fig. 5 are scaled to standard conditions with the help of 
the relation 

Sto = S t / [ ~ c ~ r  (~ /~o)  ~ ~5Pr-~ ]. 

It is evident this analysis generalizes the experimental results and they agree with 
the computed dependence for the standard boundary layer (3.2), indicating that the assump- 
tions made in the analysis of complex phenomena studied here are correct. 

Thus simple dependences were obtained for the calculation of the dynamic and thermal 
characteristics of nonisothermal twisted screens. An analogy was established between the 
effectiveness of the screen and the decay of its twist angle along the channel. The 
rotation of the screen appreciably affects the law of friction, the longitudinal velocity 
profile, and the coefficient $. The combined effect of these factors on the effectiveness 
of rotating gaseous screens is, however, weak. Twisting of the jet near the wall in this 
case intensifies the turbulent heat and mass transport toward the surface in the initial 
sections of the channel. 
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. 
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DYNAMICS OF THE BEHAVIOR OF A GAS-BUBBLE 

NUCLEUS IN A HETEROPHASE MEDIUM 

V. N. Popov and A. N. Cherepanov UDC 669.18:532.529 

The behavior of the nucleus of a gas bubble in a heterophase medium is an important 
problem in the investigation of the evolution of gas-shrinkage porosity in alloys crystal- 
lized in a certain tamperature interval [1-4] and in a study of dynamical and mass-transfer 
phenomena in gas-liquid systems moving through a porous disperse media [5-8]. The general 
solution of this type of problem under the conditions of inhomogeneity of the temperature 
and concentration fields and in the presence of convection motions of the liquid phase 
poses a complicated mathematical problem. We therefore confine the ensuing discussion to 
a simplified mathematical model of the growth of the nucleus of a gas bubble in a homo- 
geneous quasiequilibrium zone of a binary alloy [9], gene•lizing the solution to the case 
of the growth of a gas bubble in an isothermal liquid-saturated porous disperse medium. 

We consider the crystallization of a binary alloy containing dissolved gas. We assume 
that the volume occupied by the alloys is small enough for the internal thermal resistance 
of the substance to be neglected in comparison with the external thermal resistance and 
for the crystallization of the alloy to be regarded as a volume process. We neglect 
shrinkage effects in crystallization, assuming that the nucleation of a bubble isassociated 
with the displacement of dissolved gaseous component by the growing solid phase, while 
the motion of the melt is elicited by the variation of the gas-bubble radius due to gas 
diffusion from the intercrystalline liquid. We also assume that the vapor density in the 
bubble interior is negligible in comparison with the density of the gas, the distance between 
the centers of the bubbles is much larger than the characteristic diameter d I of the 
dendritic (structural) cell, and the diameter 2rp of the bubble itself is so small that the 
convective diffusion of the gas toward the bubble surface as a result of its ascension can 
be disregarded. The equations of continuity and momentum transfer have the following form 
in a spherical coordinate system attached to the center of the bubble [9]: 

a (r~/lu) = O; ( i )  

P ~ '+  T~!= ar Kp05) ~-V r~ - -2U,  

where u is the velocity of the liquid, fs is the cross section of the liquid phase (porosity), 
p is the pressure in the liquid, Kp(fs is the permeability of the heterogeneous zone, p 
is the density of the liquid, ~ is the dynamic viscosity of the liquid, and r is the radial 
coordinate. Equations (i) and (2) must be integrated subject to the boundary conditions on 
the surface of the bubble (r = rp): 
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